Send to

Choose Destination
Parkinsonism Relat Disord. 2001 Jul;7(3):261-264.

Glutamate is a cotransmitter in ventral midbrain dopamine neurons.

Author information

Departments of Psychiatry, Anatomy and Cell Biology, and Center for Neurobiology and Behavior, Columbia University, 10032, New York, NY, USA


Interactions between apparently separate dopaminergic and glutamatergic pathways figure prominently in the pathophysiology of Parkinson's Disease. So it is surprising that the ventral midbrain dopamine neurons, which give rise to the dopaminergic pathway, may themselves also be glutamatergic. We have addressed this idea in both rat and monkey brain and found that most ventral midbrain dopamine neurons exhibit glutamate immunoreactivity. We used postnatal cell culture to examine ventral midbrain dopamine neurons more closely. In vitro most dopamine neurons exhibit glutamate immunoreactivity, as well as immunoreactivity for phosphate-activated glutaminase, the enzyme principally responsible for the synthesis of neurotransmitter glutamate; inhibition of glutaminase reduces glutamate staining. In single cell microcultures, dopamine neurons make both dopaminergic and glutamatergic synaptic varicosities. Stimulation of individual dopamine neurons evokes a fast excitatory synaptic response mediated by glutamate; it also evokes dopamine release that inhibits the excitatory response via presynaptic D2 receptors. Thus, dopamine neurons appear to exert rapid synaptic actions via their glutamatergic synapses and slower modulatory actions via their dopaminergic synapses, including possibly inhibition of their own glutamatergic synapses. So, in the setting of dopamine neuron demise, there will be a loss of both dopaminergic and glutamatergic inputs to the striatum; furthermore, glutamate released by dopamine neurons may contribute to an excitotoxic cascade and the death of neighboring dopamine neurons.


Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center