Format

Send to

Choose Destination
Immunology. 2001 Apr;102(4):506-14.

The role of hepatocyte growth factor and its receptor c-met in interactions between lymphocytes and stromal cells in secondary human lymphoid organs.

Author information

1
Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK. G.Skibinski@qub.ac.uk

Abstract

Secondary lymphoid tissue consists of two major populations of cells: lymphoid cells and stromal cells. It is generally accepted that these two cell populations influence each other however, factors mediating these processes are poorly understood. In this paper we characterize one of the possible means of communication between stroma and lymphocytes namely through hepatocyte growth factor/c-met receptor interactions. Hepatocyte growth factor (HGF) is a pleiotropic factor that is mainly produced by mesenchymal cells and acts on cells of epithelial origin which express the HGF receptor c-met. Here we demonstrate that biologically active HGF is constitutively produced by fibroblast-like stromal cells from human lymphoid tissues. HGF secretion from stromal cells was increased by direct contact with activated T cells. This increase was abrogated when activated T cells were separated physically from stromal cells. Using neutralizing antibody or cytokine inhibitors we provide evidence that enhancement of HGF production was due to additive effects of T-cell membrane-associated interleukin-1 (IL-1) and CD40 ligand. Finally, we also show that B lymphocytes activated with CD40L/anti-mu or phorbol 12-myristate 13-acetate (PMA) express c-met receptor. Co-culture of activated B cells with stromal cells from spleen leads to enhanced production of immunoglobulins. This can be partially inhibited by introduction of anti-HGF neutralizing antibodies to the culture system. Substitution of stromal cells with recombinant HGF did not produce enhancement of immunoglobulin secretion. On the other hand stimulation of c-met receptor with HGF leads to enhanced integrin-mediated adhesion of activated B cells to vascular cell adhesion molecule (VCAM-1) and fibronectin. On the basis of the above experiments we conclude that HGF production by fibroblast-like stromal cells can be modulated by activated T cells, thus providing signals for the regulation of adhesion of c-met expressing B cells to extracellular matrix proteins. In this way HGF may indirectly influence immunoglobulin secretion by B cells.

PMID:
11328385
PMCID:
PMC1783204
DOI:
10.1046/j.1365-2567.2001.01186.x
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center