Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2001 Feb 27;40(8):2599-605.

Dynamics of histone acetylation in Saccharomyces cerevisiae.

Author information

  • 1Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, Missouri 64110-2499, USA. WaterborgJ@umkc.edu

Abstract

Rates of turnover for the posttranslational acetylation of core histones were measured in logarithmically growing yeast cells by radioactive acetate labeling to near steady-state conditions. On average, acetylation half-lives were approximately 15 min for histone H4, 10 min for histone H3, 4 min for histone H2B, and 5 min for histone H2A. These rates were much faster than the several hours that have previously been reported for the rate of general histone acetylation and deacetylation in yeast. The current estimates are in line with changes in histone acetylation detected directly at specific chromatin locations and the speed of changes in gene expression that can be observed. These results emphasize that histone acetylation within chromatin is subject to constant flux. Detailed analysis revealed that the turnover rates for acetylation of histone H3 are the same from mono- through penta-acetylated forms. A large fraction of acetylated histone H3, including possibly all tetra- and penta-acetylated forms, appears subject to acetylation turnover. In contrast, the rate of acetylation turnover for mono- and di-acetylated forms of histones H4 and H2B, and the fraction subject to acetylation turnover, was lower than for multi-acetylated forms of these histones. This difference may reflect the difference in location of these histones within the nucleosome, a difference in the spectrum of histone-specific acetylating and deacetylating enzymes, and a difference in the role of acetylation in different histones.

PMID:
11327883
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center