Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 2001 Apr 27;308(2):99-114.

The biological functions of A-kinase anchor proteins.

Author information

  • 1Dipartimento di Biologia, Centro di Endocrinologia ed Oncologia Sperimentale CNR, Facolt√° di Medicina, via S. Pansini, 5, Universit√° Federico II, 80131, Napoli, Italy.


cAMP-dependent protein kinase is targeted to discrete subcellular locations by a family of specific anchor proteins (A-kinase anchor proteins, AKAPs). Localization recruits protein kinase A (PKA) holoenzyme close to its substrate/effector proteins, directing and amplifying the biological effects of cAMP signaling.AKAPs include two conserved structural modules: (i) a targeting domain that serves as a scaffold and membrane anchor; and (ii) a tethering domain that interacts with PKA regulatory subunits. Alternative splicing can shuffle targeting and tethering domains to generate a variety of AKAPs with different targeting specificity. Although AKAPs have been identified on the basis of their interaction with PKA, they also bind other signaling molecules, mainly phosphatases and kinases, that regulate AKAP targeting and activate other signal transduction pathways. We suggest that AKAP forms a "transduceosome" by acting as an autonomous multivalent scaffold that assembles and integrates signals derived from multiple pathways. The transduceosome amplifies cAMP and other signals locally and, by stabilizing and reducing the basal activity of PKA, it also exerts long-distance effects. The AKAP transduceosome thus optimizes the amplitude and the signal/noise ratio of cAMP-PKA stimuli travelling from the membrane to the nucleus and other subcellular compartments.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center