Format

Send to

Choose Destination
Brain Res. 2001 May 4;900(1):72-9.

In vitro effects of nicotine on mitochondrial respiration and superoxide anion generation.

Author information

1
Laboratoire de Pharmacologie, Faculté de Médecine de Paris XII, F94 010, Créteil, France. a.cormier@univ-paris12.fr

Abstract

In this study, we investigated the effects of nicotine on rat brain mitochondria. The polarographic studies determined the effects on the respiratory chain, whereas enzymatic assays and [3H]-nicotine binding allowed us to precisely identify its target and site of action. The measurements of oxygen consumption showed a significantly concentration-dependent inhibition by nicotine (EC50 was 4.95x10(-11) M), and a maximal decrease of 23.90% at 10(-7) M. Nicotine bound to complex I of the respiratory chain and inhibited the NADH-Ubiquinone reductase activity. We also showed that nicotine and NADH were competitive on complex I. Effects of cotinine, the main nicotine metabolite, and nornicotine, were also investigated: nornicotine inhibited the mitochondrial respiration whereas cotinine did not. Because the complex I generates superoxide anion, we investigated the effects of nicotine, following NBT oxidation, and showed that nicotine was able to inhibit this reactive oxygen species (ROS) generation by 15.74% with an EC50 of 2.02x10(-11) M. In conclusion, the present study shows that nicotine interacts with the complex I of brain mitochondrial respiratory chain and decreases ROS generation. This may explain a part of the beneficial and protective effects of nicotine in few neurodegenerative diseases, as suggested by many epidemiological studies.

PMID:
11325348
DOI:
10.1016/s0006-8993(01)02254-5
[Indexed for MEDLINE]

Publication types, MeSH terms, Substances

Publication types

MeSH terms

Substances

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center