Format

Send to

Choose Destination
Anat Rec. 2001 Apr;265(2):54-84.

Magnetic resonance spectroscopy of the human brain.

Author information

1
University of Southern California, Los Angeles, USA. soccss@hmri.org

Abstract

Magnetic resonance (MR; synonymous with NMR = nuclear magnetic resonance) is a universal physical technique best known for non-invasive detection and anatomical mapping of water protons (H). MR-spectroscopy (MRS) records protons from tissue chemicals other than water, intrinsic phosphorus containing metabolites, sodium, potassium, carbon, nitrogen, and fluorine. MRS is therefore an imaging technique with the potential to record human and animal biochemistry in vivo. As a result of wide availability of MRI equipment in research laboratories and hospitals, MRS is a serious competitor with PET to define normal body composition and its perturbation by pharmacological and pathological events. This article describes practical aspects of in vivo MRS with particular emphasis on the brain, where novel metabolites have been described. A survey of these new aspects of neurochemistry emphasize their practical utility as neuronal and axonal markers, measures of energy status, membrane constituents, and osmolytes, as well as some xenobiotics, such as alcohol. The concept of multinuclear in vivo MRS is illustrated by diagnosis and therapeutic monitoring of several human brain disorders. Although these methods are currently most frequently encountered in human studies, as well as with transgenic and knockout mouse models, MRS adds a new dimension to anatomic and histopathologic descriptions.

PMID:
11323770
DOI:
10.1002/ar.1058
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center