Send to

Choose Destination
See comment in PubMed Commons below
Oncogene. 2001 Feb 22;20(8):910-20.

E2F-1 induces the stabilization of p53 but blocks p53-mediated transactivation.

Author information

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.


E2F-1 induces p53 accumulation and E2F-1 and p53 form a physical complex, which affects the ability of E2F-1 to activate transcription. We mapped the domains on E2F-1 that interact with p53 and found two p53-binding domains. To understand the functional consequences of the E2F-1/p53 association on p53 activities we identified the domains of E2F-1 that were responsible for the accumulation of p53. Unexpectedly, we found that the E2F-1 transactivation domain was dispensable for p53 induction. By contrast, further deletion of the DP-1 interaction/'marked' box domain eliminated p53 accumulation. Radiolabeling pulse/chase analysis demonstrated that E2F-1 caused post-translational stabilization of p53. Although E2F-1 caused the stabilization of p53, E2F-1 expression impaired p53-dependent transactivation. Thus, the E2F-1 : p53 interaction may provide a checkpoint function to inactivate overactive E2F-1, but the association may also inactivate p53 transactivation to allow cell cycle progression.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center