Format

Send to

Choose Destination
Biochemistry. 2001 Mar 27;40(12):3629-38.

Altering the intermediate in the equilibrium folding of unmodified yeast tRNAPhe with monovalent and divalent cations.

Author information

1
Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Illinois 60637, USA.

Abstract

The isothermal equilibrium folding of the unmodified yeast tRNA(Phe) is studied as a function of Na(+), Mg(2+), and urea concentration with hydroxyl radical protection, circular dichroism, and diethyl pyrocarbonate (DEPC) modification. These assays indicate that this tRNA folds in Na(+) alone. Similar to folding in Mg(2+), folding in Na(+) can be described by two transitions, unfolded-to-intermediate-to-native. The I-to-N transition has a Na(+) midpoint of approximately 0.5 M and a Hill constant of approximately 4. Unexpectedly, the urea m-value, the dependence of free energy on urea concentration, for the I-to-N transition is significantly smaller in Na(+) than in Mg(2+), 0.4 versus 1.7 kcal mol(-1) M(-1), indicating that more structure is formed in the Mg(2+)-induced transition. DEPC modification indicates that the I state in Na(+)-induced folding contains all four helices of tRNA and the I-to-N transition primarily corresponds to the formation of the tertiary structure. In contrast, the intermediate in Mg(2+)-induced folding contains only three helices, and the I-to-N transition corresponds to the formation of the acceptor stem plus tertiary structure. The cation dependence of the intermediates arises from the differences in the stability of the acceptor stem and the tertiary structure. The acceptor stem is stable at a lower Na(+) concentration than required for the tertiary structure formation. The relative stability is reversed in Mg(2+) so that the acceptor stem and the tertiary structure form simultaneously in the I-to-N transition. These results demonstrate that formation of the RNA secondary structure can be independent or coupled to the formation of the tertiary structure depending on their relative stability in monovalent and divalent ions.

PMID:
11297430
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center