Send to

Choose Destination
Free Radic Biol Med. 2001 Apr 15;30(8):924-31.

Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria.

Author information

Dementia Research Service, Burke Medical Research Institute, White Plains, NY 10605, USA.


Parkinson's disease (PD) is a major cause of age-related morbidity and mortality, present in nearly 1% of individuals at ages 70-79 and approximately 2.5% of individuals at age 85. L-DOPA (L-dihydroxyphenylalanine), which is metabolized to dopamine by dopa decarboxylase, is the primary therapy for PD, but may also contribute to disease progression. Association between mitochondrial dysfunction, monoamine oxidase (MAO) activity, and dopaminergic neurotoxicity has been repeatedly observed, but the mechanisms underlying selective dopaminergic neuron depletion in aging and neurodegenerative disorders remain unclear. We now report that 3,4-dihydroxyphenylacetaldehyde (DOPAL), the MAO metabolite of dopamine, is more cytotoxic in neuronally differentiated PC12 cells than dopamine and several of its metabolites. In isolated, energetically compromised mitochondria, physiological concentrations of DOPAL induced the permeability transition (PT), a trigger for cell death. Dopamine was > 1000-fold less potent. PT inhibitors protected both mitochondria and cells against DOPAL. Sensitivity to DOPAL was reduced > or = 30-fold in fully energized mitochondria, suggesting that mitochondrial respiration may increase resistance to PT induction by the endogenous DOPAL in the substantia nigra. These data provide a potential mechanism of action for L-DOPA-mediated neurotoxicity and suggest two potentially interactive mechanisms for the selective vulnerability of neurons exposed to dopamine.

[Indexed for MEDLINE]

Publication types, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center