Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Gerontol. 2001 Apr;36(4-6):723-38.

Slow aging during insect reproductive diapause: why butterflies, grasshoppers and flies are like worms.

Author information

  • 1Department of Ecology and Evolutionary Biology, Brown University, Box G-W, Providence, RI 02912, USA. marc_tatar@brown.edu

Abstract

Diapause is a state of arrested development accompanied by physiology for somatic persistence. Diapause is common in many invertebrates and is familiar to biogerontology in the context of Caenorhabditis elegans dauer. Among insects, diapause may occur in embryos, larvae, pupae or adults. At the adult stage, reproductive diapause arrests development of oogenesis, vitellogenesis, accessory gland activity, and mating behavior. Reproductive diapause has been well studied in monarch butterflies, several grasshoppers, and several Diptera, including Drosophila and Phormia. In monarchs and in grasshoppers, reproductive diapause physiology has been experimentally induced by the surgical removal of the corpora allata, the source of adult juvenile hormone; allatectomy in each case was found to double adult longevity. Among Drosophila, the endemic D. triauraria of Japan, and D. littoralis of Finland over-winter as adults in reproductive diapause. How D. melanogaster winter is poorly understood, but reproductive diapause can be cued by cool temperature. In laboratory studies, the mortality rates of post-diapause D. melanogaster are similar to rates of newly enclosed, young flies. This implies that senescence during diapause is slow or negligible. Slow aging during the diapause period may involve elevated somatic stress resistance as well as reallocation of resources to somatic maintenance. Reproductive diapause in Drosophila is proximally controlled by down regulation of juvenile hormone, a phenotype that is also produced by mutants of the insulin-like receptor InR, homologue of C. elegans daf-2. We propose neuroendocrine control of reproductive diapause in D. melanogaster that includes phenotypic plasticity for rates of senescence.

PMID:
11295511
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center