Send to

Choose Destination
Biochim Biophys Acta. 2001 Apr 7;1546(2):399-405.

Characterization of a recombinant chimeric plasminogen activator with enhanced fibrin binding.

Author information

Peking University, College of Life Sciences, National Laboratory of Protein Engineering, 100871, Beijing, PR China.


A recombinant chimeric plasminogen activator (GHRP-scu-PA-32K), consisting of the tetrapeptide Gly-His-Arg-Pro fused to the N-terminus of the low-molecular single-chain urokinase-type plasminogen activator (Leu144-Leu411), was produced by expression in CHO cells. The stable expression cell line was selected for large-scale expression. The product was purified by antibody-Sepharose affinity chromatography with a recovery of 67%. The apparent molecular weight of purified GHRP-scu-PA-32K was 33 kDa according to SDS-PAGE. Its specific activity was 150000 IU/mg protein according to fibrin plate determination. The conversion of single-chain to two-chain molecules mediated by plasmin was comparable for GHRP-scu-PA-32K (K(m)=4.9 microM, k(2)=0.35 s(-1)) and scu-PA-32K. The activation of plasminogen by GHRP-scu-PA-32K (K(m)=1.02 microM, k(2)=0.0028 s(-1)) was also similar to that of scu-PA-32K. The fibrin binding of GHRP-scu-PA-32K was 2.5 times higher than that of scu-PA-32K at a fibrin concentration of 3.2 mg/ml. In contrast to scu-PA-32K in vitro 125I-fibrin-labeled plasma clot lysis, GHRP-scu-PA had a higher thrombolytic potency, whereas it depleted less fibrinogen in plasma. These results show that GHRP-scu-PA-32K as expected is a potential thrombolytic agent.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center