Format

Send to

Choose Destination
J Lipid Res. 2001 Apr;42(4):509-20.

Oleic acid uptake and binding by rat adipocytes define dual pathways for cellular fatty acid uptake.

Author information

1
Division of Liver Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.

Abstract

Oleic acid (OA) uptake by rat adipocytes and the proportions of intracellular unesterified [3H]OA and its 3H-labeled esters were determined over 300 s. Uptake was linear for 20;-30 s, with rapid esterification indicating entry into normal metabolic pathways. Initial rates of OA uptake and its binding to plasma membranes were studied over a spectrum of oleic acid:bovine serum albumin (BSA) ratios, and expressed as functions of unbound OA concentrations calculated with both the 1971 OA:BSA association constants of Spector, Fletcher, and Ashbrook and more recent constants (e.g., the 1993 constants of Richieri, Anel, and Kleinfeld), which generate concentrations 10- to 100-fold lower. In either case, uptake was the sum of saturable and linear processes, with > or =90% occurring via the saturable pathway when the OA:BSA molar ratio was within the physiologic range (0.5;-3.0). Within this range, rate constants for saturable transmembrane influx (k(s)), calculated from both sets of constants, were similar (2.9 s(-1)) and were 10- to 30-fold faster than those for nonsaturable uptake (k(ns) = 0.26;-0.10 s(-1), t1/2 = 2.7;-6.6 s, based on the constants of Spector et al. and Richieri et al., respectively). The rate of oleic acid flip-flop into rat adipocytes (k(ff) = 0.16 +/- 0.02 s(-1), t1/2 = 4.3 +/- 0.5 s), computed from published data, was similar to k(ns). Thus, OA uptake occurs by both a saturable mechanism and passive flip-flop. This conclusion is independent of the OA:BSA association constants used to analyze the experimental measurements.

PMID:
11290822
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center