Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2001 Apr 15;97(8):2300-7.

Lineage switch induced by overexpression of Ets family transcription factor PU.1 in murine erythroleukemia cells.

Author information

Department of Cell Genetics, Sasaki Institute, and the Department of Pathology, Juntendo University School of Medicine, Tokyo, Japan.


PU.1 is an Ets family transcription factor essential for myelomonocyte and B-cell development. We previously showed that overexpression of PU.1 in murine erythroleukemia (MEL) cells inhibits growth and erythroid differentiation and induces apoptosis of the cells. In an effort to identify target genes of PU.1 concerning these phenomena by using a messenger RNA differential display strategy, we found that some myeloid-specific and lymphoid-specific genes, such as the osteopontin gene, are transcriptionally up-regulated in MEL cells after overexpression of PU.1. We then found that expression of several myelomonocyte-specific genes, including the CAAT-enhancer-binding protein-alpha and granulocyte-macrophage colony-stimulating factor receptor genes, was induced in MEL cells after overexpression of PU.1. B-cell-specific genes were also examined, and expression of the CD19 gene was found to be induced. Expression of the myelomonocyte-specific proteins CD11b and F4/80 antigen but not the B-cell-specific proteins B220 and CD19 was also induced. After overexpression of PU.1, MEL cells became adherent and phagocytic and showed enhanced nitroblue tetrazolium reduction activity. Expression of myelomonocyte-specific and B-cell-specific genes was not induced when a mutant PU.1 with part of the activation domain deleted (a change found to inhibit erythroid differentiation of MEL cells) was expressed. These results indicate that PU.1 induces a lineage switch in MEL cells toward myelomonocytic cells and that its activation domain is essential for this effect. The results also suggest that the pathway of the lineage switch is distinct from that of inhibition of erythroid differentiation in MEL cells.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center