Send to

Choose Destination
J Contam Hydrol. 2001 Feb;47(2-4):283-96.

An integrated sorption-diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite.

Author information

BMG Engineering Ltd., Ifangstrasse 11, CH-8952 Zurich-Schlieren, Switzerland.


A thermodynamic sorption model and a diffusion model based on electric double layer (EDL) theory are integrated to yield a surface chemical model that treats porewater chemistry, surface reactions, and the influence of charged pore walls on diffusing ions in a consistent fashion. The relative contribution of Stern and diffuse layer to the compensation of the permanent surface charge represents a key parameter; it is optimized for the diffusion of Cs in Kunipia-F bentonite, at a dry density of 400 kg/m3. The model is then directly used to predict apparent diffusivities (Da) of Cs, Sr, Cl-, I- and TcO4- and corresponding distribution coefficients (Kd) of Cs and Sr in different bentonites as a function of dry density, without any further adjustment of surface chemical and EDL parameters. Effective diffusivities (De) for Cs, HTO, and TcO4- are also calculated. All calculated values (Da, De, Kd) are fully consistent with each other. A comparison with published, measured data shows that the present model allows a good prediction and consistent explanation of (i) apparent and effective diffusivities for cations, anions, and neutral species in compacted bentonite, and of (ii) Kd values in batch and compacted systems.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center