Send to

Choose Destination
Nature. 2001 Apr 5;410(6829):655-60.

Invariant scaling relations across tree-dominated communities.

Author information

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.

Erratum in

  • Nature. 2003 Oct 16;425(6959):741.


Organizing principles are needed to link organismal, community and ecosystem attributes across spatial and temporal scales. Here we extend allometric theory-how attributes of organisms change with variation in their size-and test its predictions against worldwide data sets for forest communities by quantifying the relationships among tree size-frequency distributions, standing biomass, species number and number of individuals per unit area. As predicted, except for the highest latitudes, the number of individuals scales as the -2 power of basal stem diameter or as the -3/4 power of above-ground biomass. Also as predicted, this scaling relationship varies little with species diversity, total standing biomass, latitude and geographic sampling area. A simulation model in which individuals allocate biomass to leaf, stem and reproduction, and compete for space and light obtains features identical to those of a community. In tandem with allometric theory, our results indicate that many macroecological features of communities may emerge from a few allometric principles operating at the level of the individual.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center