Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Jun 15;276(24):21895-901. Epub 2001 Mar 6.

Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases.

Author information

Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.


To identify the amyloid beta peptide (Abeta) 1-42-degrading enzyme whose activity is inhibited by thiorphan and phosphoramidon in vivo, we searched for neprilysin (NEP) homologues and cloned neprilysin-like peptidase (NEPLP) alpha, NEPLP beta, and NEPLP gamma cDNAs. We expressed NEP, phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PEX), NEPLPs, and damage-induced neuronal endopeptidase (DINE) in 293 cells as 95- to 125-kDa proteins and found that the enzymatic activities of PEX, NEPLP alpha, and NEPLP beta, as well as those of NEP and DINE, were sensitive to thiorphan and phosphoramidon. Among the peptidases tested, NEP degraded both synthetic and cell-secreted Abeta1-40 and Abeta1-42 most rapidly and efficiently. PEX degraded cold Abeta1-40 and NEPLP alpha degraded both cold Abeta1-40 and Abeta1-42, although the rates and the extents of the digestion were slower and less efficient than those exhibited by NEP. These data suggest that, among the endopeptidases whose activities are sensitive to thiorphan and phosphoramidon, NEP is the most potent Abeta-degrading enzyme in vivo. Therefore, manipulating the activity of NEP would be a useful approach in regulating Abeta levels in the brain.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center