Send to

Choose Destination
Insect Biochem Mol Biol. 2001 Apr 27;31(6-7):691-702.

Characterization and cloning of a Tenebrio molitor hemolymph protein with sequence similarity to insect odorant-binding proteins.

Author information

Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6.


The yellow mealworm beetle, Tenebrio molitor, produces a number of moderately abundant low molecular weight hemolymph proteins ( approximately 12 kDa) which behave in a similar manner during purification and share antigenic epitopes. The cDNA sequence of the major component (THP12) was determined and the deduced protein sequence was found to be similar to those of insect odorant-binding proteins. Southern blot analysis suggests that at least some of the diversity in this family of proteins is encoded at the gene level. Both northern and western blot analysis indicate that THP12 is present in a variety of developmental stages and both sexes. THP12 was originally classified as an antifreeze protein, but the lack of antifreeze activity in the recombinant protein, as well as the clear separation of the antifreeze activity from THP12 following HPLC purification, has ruled out this function. The abundance of THP12, the similarity of THP12 to insect odorant-binding proteins, and the presence of hydrophobic cavities inside the protein (Rothemund et al., A new class of hexahelical insect proteins revealed as putative carriers of small hydrophobic ligands. Structure, 7 (1999) 1325-1332.) suggest that THP12 may function to carry non-water soluble compounds in the hemolymph. THP12 is also similar, particularly in structurally important regions, to other insect proteins from non-sensory tissues, suggesting the existence of a large family of carrier proteins which may perform diverse functions throughout the insect.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center