Format

Send to

Choose Destination
J Biomech. 2001 Apr;34(4):429-35.

Frictional heating of total hip implants. Part 2: finite element study.

Author information

1
Biomechanics Laboratory, Benjamin Franklin School of Medicine, Free University of Berlin, Hindenburgdamm 30, 12200 Berlin, Germany. bergmann@biomechanik.de

Abstract

Due to higher friction artificial hip joints warm up more than natural joints during walking and other continuous activities. This could lead to thermal damage in the surrounding tissues and be a reason for long-term implant loosening, an effect which has not yet been investigated. In vivo measurements with instrumented implants showed temperatures inside the prosthetic head up to 43.1 degrees C (Part 1 of this work). Based on the experimental data a finite element model was developed to calculate the temperatures in the tissues surrounding the hip implant to determine whether these tissues can heat up to critical levels. Various parameters were investigated which could account for the variations in the measured temperatures in the patients, including the perfusion rate in tissues, the volume of synovial fluid, and different implant materials. We found that the synovial fluid is most endangered by thermal damage and consequent deterioration of lubricating properties. Implants with a cobalt-chromium head and a polyethylene cup are unfavourable as they can elevate the temperature in the synovia to more than 46 degrees C. With regard to thermal properties stems made from cobalt-chromium alloys are superior to titanium stems, by better conducting heat to the femur and minimizing the synovial fluid temperature. Factors determining the temperatures during walking are insufficiently known or cannot be determined in the individual patient. Therefore, the risk of a thermally induced implant loosening cannot currently be estimated. Under unfavourable conditions such a risk exists, however. General improvements of implant materials and clinical studies on the possibility of implant loosening due to high temperatures are therefore required.

PMID:
11266665
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center