Format

Send to

Choose Destination
See comment in PubMed Commons below
J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 1):S15-22.

Smad-Runx interactions during chondrocyte maturation.

Author information

  • 1Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003, USA. phoebe@biochem.dental.upenn.edu

Abstract

BACKGROUND:

Intracellular signaling triggered by bone morphogenetic proteins (BMPs) results in activated Smad complexes that regulate transcription of BMP-responsive genes. However, the low specificity of Smad binding to regulatory sequences implies that additional tissue-specific transcription factors are also needed. Runx2 (Cbfal) is a transcription factor required for bone formation. We have examined the role of Smads and Runx2 in BMP induction of type X collagen, which is a marker of chondrocyte hypertrophy leading to endochondral bone formation.

METHODS:

Pre-hypertrophic chondrocytes from the cephalic portion of the chick embryo sternum were placed in culture in the presence or absence of rhBMP-2. Cultures were transiently transfected with DNA containing the BMP-responsive type X collagen promoter upstream of the luciferase gene. The cultures were also transfected with plasmids, causing over-expression of Smads or Runx2, or both. After 24-48 hours, cell extracts were examined for levels of luciferase expression.

RESULTS:

In the presence of BMP-2, chondrocytes over-expressing BMP-activated Smadl or Smad5 showed significant enhancement of luciferase production compared with that seen with BMP alone. This enhancement was not observed with over-expression of Smad2, a transforming growth factor beta (TGF-beta)-activated Smad. Overexpression of Runx2 in BMP-treated cultures increased transcriptional activity to levels similar to those seen with Smads 1 or 5. When chondrocytes were simultaneously transfected with both Runx2 and Smad 1 or 5, promoter activity was further increased, indicating that BMP-stimulated Smad activity can be augmented by increasing the levels of Runx2.

CONCLUSIONS:

These results implicate the skeletal tissue transcription factor Runx2 in regulation of chondrocyte hypertrophy and suggest that maximal transcription of the type X collagen gene in pre-hypertrophic chondrocytes involves interaction of BMP-stimulated Smads with Runx2.

CLINICAL RELEVANCE:

Many skeletal abnormalities are associated with impaired regulation of chondrocyte hypertrophy in growth plates. These studies demonstrate that both BMP-activated Smads and Runx2 levels can modulate chondrocyte transition to hypertrophy.

PMID:
11263661
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center