Format

Send to

Choose Destination
Inorg Chem. 2001 Mar 26;40(7):1704-11.

Synthesis and characterization of phosphorescent cyclometalated iridium complexes.

Author information

1
Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA.

Abstract

The preparation, photophysics, and solid state structures of octahedral organometallic Ir complexes with several different cyclometalated ligands are reported. IrCl3.nH2O cleanly cyclometalates a number of different compounds (i.e., 2-phenylpyridine, 2-(p-tolyl)pyridine, benzoquinoline, 2-phenylbenzothiazole, 2-(1-naphthyl)benzothiazole, and 2-phenylquinoline), forming the corresponding chloride-bridged dimers, CwedgeN2Ir(mu-Cl)2IrCwedgeN2 (CwedgeNis a cyclometalated ligand) in good yield. These chloride-bridged dimers react with acetyl acetone (acacH) and other bidentate, monoanionic ligands such as picolinic acid (picH) and N-methylsalicylimine (salH), to give monomeric CwedgeN2Ir(LX) complexes (LX = acac, pic, sal). The emission spectra of these complexes are largely governed by the nature of the cyclometalating ligand, leading to lambda(max) values from 510 to 606 nm for the complexes reported here. The strong spin-orbit coupling of iridium mixes the formally forbidden 3MLCT and 3pi-pi* transitions with the allowed 1MLCT, leading to a strong phosphorescence with good quantum efficiencies (0.1-0.4) and room temperature lifetimes in the microsecond regime. The emission spectra of the CwedgeN2Ir(LX) complexes are surprisingly similar to the fac-IrCwedgeN3 complex of the same ligand, even though the structures of the two complexes are markedly different. The crystal structures of two of the CwedgeN2Ir(acac) complexes (i.e., CwedgeN = ppy and tpy) have been determined. Both complexes show cis-C,C', trans-N,N' disposition of the two cyclometalated ligands, similar to the structures reported for other complexes with a "CwedgeN2Ir" fragment. NMR data (1H and 13C) support a similar structure for all of the CwedgeN2Ir(LX) complexes. Close intermolecular contacts in both (ppy)2Ir(acac) and (tpy)2Ir(acac) lead to significantly red shifted emission spectra for crystalline samples of the ppy and tpy complexes relative to their solution spectra.

PMID:
11261983

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center