Gas-phase structures of acetyl peroxynitrate and trifluoroacetyl peroxynitrate

Inorg Chem. 2001 Mar 26;40(7):1672-6. doi: 10.1021/ic001077r.

Abstract

The molecular structures and conformational properties of acetyl peroxynitrate (PAN, CH3C(O)OONO2) and trifluoroacetyl peroxynitrate (FPAN, CF3C(O)OONO2) were investigated in the gas phase by electron diffraction (GED), microwave spectroscopy (MW), and quantum chemical methods (HF/3-21G, HF/6-31G*, MP2/6-31G*, B3PW91/6-31G*, and B3PW91/6-311+G*). All experimental and theoretical methods show the syn conformer (C=O bond of acetyl group syn to O-O bond) to be strongly predominant relative to the anti conformer. The O-NO2 bonds are extremely long, 1.492(7) A in PAN and 1.526(10) A in FPAN, which correlates with their low bond energy and the easy formation of CX3C(O)OO* and *NO2 radicals in the atmosphere. The O-O bonds (1.418(12) A in PAN and 1.408(8) A in FPAN) are shorter than that in hydrogen peroxide (1.464 A). In both compounds the C-O-O-N dihedral angle is close to 85 degrees.