Send to

Choose Destination

A pharmacogenomic approach to Alzheimer's disease.

Author information

EuroEspes Biomedical Research Center, Institute for CNS Disorders, La Coruña, Spain.


Single nucleotide polymorphisms (susceptibility genetics) and genomic point mutations (mendelian genetics) can be used in Alzheimer's disease (AD) for diagnostic, predictive and therapeutic purposes. Using a matrix genetic model, including APOE, PS1 and PS2 allelic variants, we have studied the distribution of 36 different genotypes in the AD population (N= 479) and the genotype-related cognitive response to a multifactorial therapy in AD patients with mild-to-moderate dementia. The 10 most frequent AD genotypes are the following: 1) E33P112P2 + (17.75%), 2) E33P112P2- (15.55%), 3) E33P111P2+ (10.85%), 4) E34P112P2+ (9.60%), 5) E34P112P2- (7.56%), 6) E33P111P2- (7.10%), 7) E34P111P2+ (4.80%), 8) E33P122P2+ (4.38%), 9) E34P111P2- (4.18%), and 10) E34P122P2+ (3.55%). APOE-4/4-related genotypes represent less than 3% in the following order: E44P112P2 + > E44P111P2+ = E44P111P2- > E44P112P2+ > E44P122P2+ = E44P122P2. Multifactorial therapy with CDP-choline (1,000 mg/day) + piracetam (2,400 mg/day) + anapsos (360 mg/day) did improve mental performance during the first 6-15 months in a genotype-specific fashion. The best responders in the APOE series were patients with APOE-3/4 genotype (r= +0.013), while the worst responders were APOE-4/4 patients (r= -0.93). PS1-related genotypes responded in a similar manner; and patients with a defective PS2 gene exon 5 (PS2+) always showed a poorer therapeutic response than PS2- patients. All these data suggest that the therapeutic outcome in AD exhibits a genotype-specific pattern, and that a pharmacogenomic approach to AD might be a valuable strategy for drug development and monitoring.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center