Format

Send to

Choose Destination
See comment in PubMed Commons below
J Pharmacol Exp Ther. 2001 Apr;297(1):240-6.

Calcium channel blockade in vascular smooth muscle cells: major hypotensive mechanism of S-petasin, a hypotensive sesquiterpene from Petasites formosanus.

Author information

1
National Research Institute of Chinese Medicine, Rm. 355, 155-1, Sec. 2, Li-Nong St. Pei-Tou Dist. (112), Taipei, Taiwan, Republic of China. jennyw@cma23.nricm.edu.tw

Abstract

In vivo and in vitro studies were carried out to examine the putative hypotensive actions of S-petasin, a sesquiterpene extracted from the medicinal plant Petasites formosanus. Intravenous S-petasin (0.1-1.5 mg/kg) in anesthetized rats produced a dose-dependent hypotensive effect. In isolated aortic ring, isometric contraction elicited by KCl or the L-type Ca2+ channel agonist Bay K 8644 was reduced by S-petasin (0.1-100 microM), an action not affected by the cyclooxygenase inhibitor indomethacin, nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine, guanylyl cyclase inhibitor methylene blue, or removal of vascular endothelium. Pretreatment with S-petasin for 10 min shifted the concentration-response curve for KCl (15-90 mM)-induced contraction to the right and reduced the maximal response. In Ca2+-depleted and high K+-depolarized aortic rings preincubation with S-petasin attenuated the Ca2+-induced contraction in a concentration-dependent manner, suggesting that S-petasin reduced Ca2+ influx into vascular smooth muscle cells (VSMCs). Moreover, in cultured VSMCs, whole-cell patch-clamp recording indicated that S-petasin (1-50 microM) inhibited the L-type voltage-dependent Ca2+ channel (VDCC) activities. Intracellular Ca2+ concentration ([Ca2+[(i)) estimation using the fluorescent probe 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2'-amino-5'-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid pentaacetoxymethyl ester indicated that S-petasin (10, 100 microM) suppressed the KCl-stimulated increase in ([Ca2+[(i)). Taken together, the results suggested that a direct Ca2+ antagonism of L-type VDCC in vascular smooth muscle may account, at least in part, for the hypotensive action of S-petasin.

PMID:
11259550
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center