Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2001 Jun 1;276(22):18968-76. Epub 2001 Mar 19.

Retention of heme in axial ligand mutants of succinate-ubiquinone xxidoreductase (complex II) from Escherichia coli.

Author information

  • 1Molecular Biology Division (151-S), Veterans Affairs Medical Center, San Francisco, California 94121, USA.


Succinate-ubiquinone oxidoreductase (SdhCDAB, complex II) from Escherichia coli is a four-subunit membrane-bound respiratory complex that catalyzes ubiquinone reduction by succinate. In the E. coli enzyme, heme b(556) is ligated between SdhC His(84) and SdhD His(71). Contrary to a previous report (Vibat, C. R. T., Cecchini, G., Nakamura, K., Kita, K., and Gennis, R. B. (1998) Biochemistry 37, 4148-4159), we demonstrate the presence of heme in both SdhC H84L and SdhD H71Q mutants of SdhCDAB. EPR spectroscopy reveals the presence of low spin heme in the SdhC H84L (g(z) = 2.92) mutant and high spin heme in the SdhD H71Q mutant (g = 6.0). The presence of low spin heme in the SdhC H84L mutant suggests that the heme b(556) is able to pick up another ligand from the protein. CO binds to the reduced form of the mutants, indicating that it is able to displace one of the ligands to the low spin heme of the SdhC H84L mutant. The g = 2.92 signal of the SdhC H84L mutant titrates with a redox potential at pH 7.0 (E(m)(,7)) of approximately +15 mV, whereas the g = 6.0 signal of the SdhD H71Q mutant titrates with an E(m)(,7) of approximately -100 mV. The quinone site inhibitor pentachlorophenol perturbs the heme optical spectrum of the wild-type and SdhD H71Q mutant enzymes but not the SdhC H84L mutant. This finding suggests that the latter residue also plays an important role in defining the quinone binding site of the enzyme. The SdhC H84L mutation also results in a significant increase in the K(m) and a decrease in the k(cat) for ubiquinone-1, whereas the SdhD H71Q mutant has little effect on these parameters. Overall, these data indicate that SdhC His(84) has an important role in defining the interaction of SdhCDAB with both quinones and heme b(556).

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center