Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2001 Mar 20;40(11):3348-53.

Modifying Mg2+ binding and exchange with the N-terminal of calmodulin.

Author information

Department of Molecular and Cellular Biochemistry, and Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA.


To follow Mg2+ binding to the N-terminal of calmodulin (CaM), we substituted Phe in position 19, which immediately precedes the first Ca2+/Mg2+ binding loop, with Trp, thus making F19WCaM (W-Z). W-Z has four acidic residues in chelating positions, two of which form a native Z-acid pair. We then generated seven additional N-terminal CaM mutants to examine the role of chelating acidic residues in Mg2+ binding and exchange with the first EF-hand of CaM. A CaM mutant with acidic residues in all of the chelating positions exhibited Mg2+ affinity similar to that of W-Z. Only CaM mutants that had a Z-acid pair were able to bind Mg2+ with physiologically relevant affinities. Removal of the Z-acid pair from the first EF-hand produced a dramatic 58-fold decrease in its Mg2+ affinity. Additionally, removal of the Z-acid pair led to a 1.8-fold increase in the rate of Mg2+ dissociation. Addition of an X- or Y-acid pair could not restore the high Mg2+ binding lost with removal of the Z-acid pair. Therefore, the Z-acid pair in the first EF-hand of CaM supports high Mg2+ binding primarily by increasing the rate of Mg2+ association.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center