Send to

Choose Destination
J Neurophysiol. 2001 Mar;85(3):1051-8.

Modulation by extracellular pH of low- and high-voltage-activated calcium currents of rat thalamic relay neurons.

Author information

Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke Universität, D-39120 Magdeburg, Germany.


The effects of changes in the extracellular pH (pH(o)) on low-voltage- (LVA) and high-voltage- (HVA) activated calcium currents of acutely isolated relay neurons of the ventrobasal thalamic complex (VB) were examined using the whole cell patch-clamp technique. Modest extracellular alkalinization (pH 7.3 to 7.7) reversibly enlarged LVA calcium currents by 18.6 +/- 3.2% (mean +/- SE, n = 6), whereas extracellular acidification (pH 7.3 to 6.9) decreased the current by 24.8 +/- 3.1% (n = 9). Normalized current amplitudes (I/I(7.3)) fitted as a function of pH(o) revealed an apparent pK(a) of 6.9. Both, half-maximal activation voltage and steady-state inactivation were significantly shifted to more negative voltages by 2-4 mV on extracellular alkalinization and to more positive voltages by 2-3 mV on extracellular acidification, respectively. Recovery from inactivation of LVA calcium currents was not significantly affected by changes in pH(o). In contrast, HVA calcium currents were less sensitive to changes in pH(o). Although extracellular alkalinization increased maximal HVA current by 6.0 +/- 2.0% (n = 7) and extracellular acidification decreased it by 11.9 +/- 0.02% (n = 11), both activation and steady-state inactivation were only marginally affected by the moderate changes in pH(o) used in the present study. The results show that calcium currents of thalamic relay neurons exhibit different pH(o) sensitivity. Therefore activity-related extracellular pH transients might selectively modulate certain aspects of the electrogenic behavior of thalamic relay neurons.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center