Send to

Choose Destination
Environ Microbiol. 2000 Feb;2(1):27-38.

Mannuronan C-5 epimerases and cellular differentiation of Azotobacter vinelandii.

Author information

UNIGEN Center for Molecular Biology and Department of Biotechnology, Norwegian University of Science and Technology, Trondheim.


Differentiation in Azotobacter vinelandii involves the encystment of the vegetative cell under adverse environmental circumstances and the germination of the resting cell into the vegetative state when growth conditions are satisfactory again. Morphologically, the encystment process involves the development of a protective coat around the resting cell. This coat partly consists of multiple layers of alginate, which is a copolymer of beta-D-mannuronic acid (M) and alpha-L-guluronic acid (G). Alginate contributes to coat rigidity by virtue of a high content of GG blocks. Such block structures are generated through a family of mannuronan C-5 epimerases that convert M to G after polymerization. Results from immunodetection and light microscopy, using stains that distinguish between different cyst components and types, indicate a correlation between cyst coat organization and the amount and appearance of mannuronan C-5 epimerases in the extracellular medium and attached to the cells. Specific roles of individual members of the epimerase family are indicated. Calcium and magnesium ions appear to have different roles in the structural organization of the cyst coat. Also reported is a new gene sharing strong sequence homology with parts of the epimerase-encoded R-modules. This gene is located within the epimerase gene cluster of Azotobacter vinelandii.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center