Format

Send to

Choose Destination
See comment in PubMed Commons below
Respir Physiol. 2001 Mar;125(1-2):129-44.

Motor control of airway goblet cells and glands.

Author information

1
Thoracic Medicine, National Heart and Lung Institute, Imperial College, Dovehouse Street, SW3 6LY, London, UK. ducan.rogers@ic.ac.uk

Abstract

Activation of nerves increases airway mucus secretion. The mucus derives from submucosal glands and epithelial goblet cells. Depending upon species and airway level, innervation comprises parasympathetic (cholinergic), sympathetic (adrenergic) and 'sensory-efferent' pathways. In all species studied, cholinergic mechanisms predominate, particularly in human airways. Muscarinic M3 receptors on the secretory cells mediate the cholinergic response. Tachykinins (substance P and neurokinin A) mediate the sensory-efferent response, acting via tachykinin NK1 receptors. Endogenous mechanisms regulate the magnitude of neurogenic secretion, including enzymes (degrade neurotransmitters), nitric oxide (NO) and vasoactive intestinal peptide (VIP) (regulate stimulated secretion), and muscarinic M2 autoreceptors (inhibit acetylcholine release). Exogenous opioids also inhibit neurogenic secretion prejunctionally. Both VIP and opioids act by opening large conductance, calcium-activated potassium (BK(Ca)) channels. Present understanding of neural control of mucus secretion in animal airways requires translation into human data. This information should lead to rational development of drugs for bronchial diseases in which neurogenic mucus hypersecretion contributes to pathophysiology, including chronic bronchitis and asthma.

PMID:
11240157
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center