Send to

Choose Destination
J Neurosci Res. 2001 Mar 1;63(5):421-8.

Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells.

Author information

Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Universitat de Barcelona, Barcelona, Spain.


There is growing evidence that apoptotic mechanisms underlie the neurodegeneration leading to Parkinson's disease. 1-Methyl-4-phenylpyridinium ion (MPP(+)), the active metabolite of the parkinsonism-inducing drug MPTP, induced apoptosis in cultures of human SH-SY5Y neuroblastoma cells. Nuclear fragmentation, DNA laddering, and a 20% decrease in viability were seen after a 4-day incubation with 5 microM MPP(+). Cell viability decreased by 40% at 100 microM MPP(+), but the degree of apoptosis was not correlatively increased. The MPP(+)-induced apoptosis was completely prevented by the broad caspase inhibitor zVAD.fmk but not by the caspase-8 inhibitor IETD.fmk. Furthermore, MPP(+) had no effect on the levels of Fas or Fas-L, suggesting lack of activation of the Fas-L/Fas/caspase-8 pathway of apoptosis. There was no evidence of mitochondrial dysfunction at 5 microM MPP(+): No differences were seen in transmembrane potential or in cytochrome c release from controls. At 100 microM MPP(+), the mitochondrial potential decreased, and cytoplasmic cytochrome c and caspase-9 activation increased slightly. At both low and high concentrations of MPP(+), VDVADase and DEVDase activities increased. We conclude that MPP(+) can induce caspase-mediated apoptosis, which is prevented by caspase inhibition, at concentrations lower than those needed to trigger mitochondrial dysfunction and closer to those found in the brains of MPTP-treated animals.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center