Format

Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2001 Mar;75(6):2993-3000.

Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions.

Author information

1
Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94141, USA.

Abstract

The Nef protein of the type 1 human immunodeficiency virus (HIV-1) plays a key although poorly understood role in accelerating the progression of clinical disease in vivo. Nef exerts several biological effects in vitro, including enhancement of virion infectivity, downregulation of CD4 and major histocompatibility complex class I receptor expression, and modulation of various intracellular signaling pathways. The positive effect of Nef on virion infectivity requires its expression in the producer cell, although its effect is manifested in the subsequent target cell of infection. Prior studies suggest that Nef does not alter viral entry into target cells; nevertheless, it enhances proviral DNA synthesis, arguing for an action of Nef at the level of viral uncoating or reverse transcription. However, these early studies discounting an effect of Nef on virion entry may be confounded by the recent finding that HIV enters cells by both fusion and endocytosis. Using epifluorescence microscopy to monitor green fluorescent protein-Vpr-labeled HIV virion entry into HeLa cells, we find that endocytosis forms a very active pathway for virus uptake. Virions entering via the endocytic pathway do not support productive infection of the host cell, presumably reflecting their inability to escape from the endosomes. Conversely, our studies now demonstrate that HIV Nef significantly enhances CD4- and chemokine receptor-dependent entry of HIV virions into the cytoplasmic compartment of target cells. Mutations in Nef either impairing its ability to downregulate CD4 or disrupting its polyproline helix compromise virion entry into the cytoplasm. We conclude that Nef acts at least in part as a regulator of cytosolic viral entry and that this action contributes to its positive effects on viral infectivity.

PMID:
11222724
PMCID:
PMC115925
DOI:
10.1128/JVI.75.6.2993-3000.2001
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center