Format

Send to

Choose Destination
See comment in PubMed Commons below
Ann Neurol. 2001 Feb;49(2):155-64.

Functional correlates of pallidal stimulation for Parkinson's disease.

Author information

1
Center for Neurosciences, North Shore-Long Island Jewish Research Institute, Manhasset, New York, USA.

Abstract

We measured regional cerebral blood flow with H2 15O and positron emission tomography (PET) scanning at rest and during a motor task to study the mechanism of motor improvement induced by deep brain stimulation of the internal globus pallidus in Parkinson's disease. Six right-handed patients with Parkinson's disease were scanned while performing a predictable paced sequence of reaching movements and while observing the same screen displays and tones. PET studies were performed ON and OFF stimulation in a medication-free state. Internal globus pallidus deep brain stimulation improved off-state United Parkinson's Disease Rating Scale motor ratings (37%, p < 0.002) and reduced timing errors (movement onset time, 55%, p < 0.01) as well as spatial errors (10%, p < 0.02). Concurrent regional cerebral blood flow recordings revealed a significant enhancement of motor activation responses in the left sensorimotor cortex (Brodmann area [BA] 4), bilaterally in the supplementary motor area (BA 6), and in the right anterior cingulate cortex (BA 24/32). Significant correlations were evident between the improvement in motor performance and the regional cerebral blood flow changes mediated by stimulation. With internal globus pallidus deep brain stimulation, improved movement initiation correlated with regional cerebral blood flow increases in the left sensorimotor cortex and ventrolateral thalamus and in the contralateral cerebellum. By contrast, improved spatial accuracy correlated with regional cerebral blood flow increases in both cerebellar hemispheres and in the left sensorimotor cortex. These results suggest that internal globus pallidus deep brain stimulation may selectively improve different aspects of motor performance. Multiple, overlapping neural pathways may be modulated by this intervention.

PMID:
11220735
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Loading ...
    Support Center