Send to

Choose Destination
Planta. 2001 Jan;212(2):205-14.

Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.).

Author information

Research School of Biological and Molecular Sciences, Oxford Brookes University, Headington, UK.


Aerenchyma is a tissue type characterised by prominent intercellular spaces which enhance flooding tolerance in some plant species by facilitating gas diffusion between roots and the aerial environment. Aerenchyma in maize roots forms by collapse and death of some of the cortical cells in a process that can be promoted by imposing oxygen shortage or by ethylene treatment. Maize roots grown hydroponically in 3% oxygen, 1 microl x l(-1) ethylene or 21% oxygen (control) were analysed by a combination of light and electron microscopy. Use of in-situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) suggested internucleosomal cleavage of DNA. However, chromatin condensation detectable by electron microscopy was preceded by cytoplasmic changes including plasma membrane invagination and the formation of vesicles, in contrast to mammalian apoptosis in which chromatin condensation is the first detectable event. Later, cellular condensation, condensation of chromatin and the presence of intact organelles surrounded by membrane resembling apoptotic bodies were observed. All these events were complete before cell wall degradation was apparent. Therefore, aerenchyma formation initiated by hypoxia or ethylene appears to be a form of programmed cell death that shows characteristics in part resembling both apoptosis and cytoplasmic cell death in animal cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center