Format

Send to

Choose Destination
J Hypertens. 2001 Feb;19(2):213-22.

Peripheral arterial vascular function at altitude: sea-level natives versus Himalayan high-altitude natives.

Author information

1
Department of Anesthesiology, University Medical Centre Regensburg, University of Regensburg, Germany.

Abstract

OBJECTIVES:

Regulation of the vascular system may limit physical performance and contribute to adaptation to high altitude. We evaluated vascular function in 10 Himalayan high-altitude natives and 10 recently acclimatized sea-level natives at an altitude of 5,050 m.

METHODS:

We registered electrocardiogram, blood flow velocity in the common femoral artery, and blood pressure in the radial artery using non-invasive methods under baseline conditions, and during maximal vasodilation after 2 min leg occlusion. Vascular mechanics were characterized by estimating pulse wave velocity and input impedance.

RESULTS:

Pulse wave velocity and parameters of input impedance did not differ between groups under baseline conditions. In the post-ischemic period, the ratio between maximal hyperemic and baseline blood flow velocity was significantly higher in the high-altitude than in the sea-level natives (5.7 +/- 2.5 versus 3.8 +/- 1.2, P < 0.05). The leg vascular resistance decreased in the post-occlusive period without differences between groups. Characteristic impedance decreased in the post-ischemic period by about one third of the baseline level without differences between groups. The post-ischemic decrease of input impedance modulus was more marked in the high-altitude than in the sea-level natives at low frequencies (28 +/- 12 versus 6.4 +/- 20% at 2 Hz, P < 0.01).

CONCLUSIONS:

Our results demonstrate a superior ability to increase blood flow velocity as a response to muscular ischemia in high-altitude natives compared to sea-level natives. This phenomenon may be associated with a more effective coupling between blood pressure and blood flow which is probably caused by differences in conduit vessel function.

PMID:
11212963
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wolters Kluwer
Loading ...
Support Center