Send to

Choose Destination
Am J Respir Crit Care Med. 2001 Jan;163(1):152-7.

Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway.

Author information

First Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan.


Myofibroblasts play an important role in the fibrogenic process of pulmonary fibrosis. Transforming growth factor (TGF)-beta is well known to induce the phenotypic modulation of fibroblasts to myofibroblasts; however, the intracellular signal regulating induction of the myofibroblastic phenotype of human lung fibroblasts (HLF) has not been determined. In the present study, we examined the role of the mitogen-activated protein kinase (MAPK) superfamily in inducing the phenotypic modulation of HLF to myofibroblasts characterized by alpha-smooth-muscle actin expression, in order to clarify this issue. The results showed that: (1) TGF-beta1 caused the phenotypic modulation of HLF to myofibroblasts in a dose- and a time-dependent manner; (2) TGF-beta1 induced increases in c-Jun-NH2- terminal kinase (JNK), p38 MAPK, and extracellular signal-regulated kinase (Erk) phosphorylation and activity; (3) the inhibitors CEP-1347, SB 203580, and PD 98059 attenuated TGF-beta1-induced JNK, p38 MAPK, and Erk activity, respectively; and (4) CEP-1347, but not SB 203580 or PD 98059, attenuated the TGF-beta1-induced phenotypic modulation of HLF to myofibroblasts in a dose-dependent manner. These results indicate that TGF-beta1 is capable of inducing the myofibroblastic phenotype of HLF, and that JNK regulates the phenotypic modulation of TGF-beta1-stimulated HLF to myofibroblasts.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center