Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2001 Jan 25;409(6819):494-7.

Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers.

Author information

  • 1Department of Physics, University of Utah, Salt Lake City 84112, USA.

Abstract

Electroluminescence in organic light-emitting diodes arises from a charge-transfer reaction between the injected positive and negative charges by which they combine to form singlet excitons that subsequently decay radiatively. The quantum yield of this process (the number of photons generated per electron or hole injected) is often thought to have a statistical upper limit of 25 per cent. This is based on the assumption that the formation cross-section of singlet excitons, sigmaS, is approximately the same as that of any one of the three equivalent non-radiative triplet exciton states, sigmaT; that is, sigmaS/sigmaT approximately 1. However, recent experimental and theoretical work suggests that sigmaS/sigmaT may be greater than 1. Here we report direct measurements of sigmaS/sigmaT for a large number of pi-conjugated polymers and oligomers. We have found that there exists a strong systematic, but not monotonic, dependence of sigmaS/sigmaT on the optical gap of the organic materials. We present a detailed physical picture of the charge-transfer reaction for correlated pi-electrons, and quantify this process using exact valence bond calculations. The calculated sigmaS/sigmaT reproduces the experimentally observed trend. The calculations also show that the strong dependence of sigmaS/sigmaT on the optical gap is a signature of the discrete excitonic energy spectrum, in which higher energy excitonic levels participate in the charge recombination process.

[PubMed]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk