Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2001 Jan 1;61(1):76-80.

Proteomic analysis reveals that 14-3-3sigma is down-regulated in human breast cancer cells.

Author information

Equipe Facteurs de Croissance, Laboratoire de Biologie du Développement, UPRES-EA 1033, Villeneuve d'Ascq, France.


The class of molecular chaperones known as 14-3-3 is involved in the control of cellular growth by virtue of its apparent regulation of various signaling pathways, including the Raf/mitogen-activated protein kinase pathway. In breast cancer cells, the sigma form of 14-3-3 has been shown to interact with cyclin-dependent kinases and to control the rate of entry into mitosis. To test for a direct role for 14-3-3 in breast epithelial cell neoplasia, we have quantitated 14-3-3 protein levels using a proteomic approach based on two-dimensional electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF). We show here that 14-3-3sigma protein is strongly down-regulated in the prototypic breast cancer cell lines MCF-7 and MDA-MB-231 and in primary breast carcinomas as compared with normal breast epithelial cells. In contrast, levels of the alpha, beta, delta, or zeta isoforms of 14-3-3 were the same in both normal and transformed cells. The data support the idea that 14-3-3sigma is involved in the neoplastic transition of breast epithelial cells by virtue of its role as a tumor suppressor; as such, it may constitute a robust marker with clinical efficacy for this pathology.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center