Format

Send to

Choose Destination
See comment in PubMed Commons below
Free Radic Res. 2000 Nov;33 Suppl:S99-108.

Human studies related to protein oxidation: protein carbonyl content as a marker of damage.

Author information

1
Molecular Nutrition Research Group, Nestle Research Center, Vers chez les Blanc, Lausanne, Switzerland. chevion@cc.huji.ac.il

Abstract

Proteins constitute the major 'working force' for all forms of biological work. Their exact conformation and pattern of folding are tightly connected to their activity and function. Reactive oxygen and nitrogen species (ROS and RNS) are formed during normal metabolism and in higher fluxes under pathological conditions. They cause cellular damage, an important part of which is the oxidation of amino acid residues on proteins, forming protein carbonyls. Other direct modifications of protein side chains, such as o-tyrosine, chloro-, nitrotyrosine, and dityrosine, have been identified. In addition, carbohydrate and lipid derivatives can react with proteins to form adducts that can be analyzed. Protein carbonyl content (PCC) is the most widely used marker of oxidative modification of proteins. There are several methodologies for the quantitation of PCC; in all of them 2,4-dinitrophenyl hydrazine is allowed to react with the protein carbonyls to form the corresponding hydrazone, which can be analyzed optically by radioactive counting or immunohistochemically. Using PCC as a marker, it could be demonstrated that oxidative damage to proteins correlates well with aging and the severity of some diseases. A critical evaluation of PCC and other markers of protein oxidation is presented, together with examples of protein oxidation in diabetes, neurodegenerative diseases, and aging.

PMID:
11191280
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center