Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nutr Biochem. 2001 Feb;12(2):66-72.

Calcium competes with zinc for a channel mechanism on the brush border membrane of piglet intestine.

Author information

1
Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, ON, Canada

Abstract

Interactions between Ca(+2) and Zn(+2) at the intestinal brush border membrane occur via unclear mechanisms. We hypothesized that Zn(+2) and Ca(+2) are transported across the brush border membrane via a multidivalent metal channel. Using brush border membrane vesicles (BBMV) prepared from intestines of 8 sow-fed piglets, we sought to determine whether Ca(+2) competes with Zn(+2) for uptake. Extravesicular Zn(+2) was removed with ethylenediamine-tetraacetic acid. Time curves of Zn(+2) and Ca(+2) uptake by BBMV were conducted with increasing concentrations of Ca(+2) and Zn(+2), respectively. Saturation curves compared kinetic parameters of Zn(+2) uptake with and without Ca(+2). In addition, Zn(+2) uptake was measured in the presence of various classical Ca(+2) channel modulators. Over 20 min, a 0.4x concentration of Zn(+2) lowered Ca(+2) uptake by vesicles, whereas a 30x concentration of Ca(+2) was necessary to lower Zn(+2) uptake. These data suggest that Ca(+2) has lower affinity than Zn(+2) for a brush border membrane transport protein. Kinetic parameters showed higher K(m) values with 4 or 15 mM Ca(+2) but unchanged J(max), suggesting competitive inhibition. The Ca(+2) channel blocking agents, La(+3), Ba(+2), verapamil, and diltiazem, inhibited Zn(+2) uptake, whereas calcitriol, trans 1,2 cyclohexanediol, cis/trans 1,3 cyclohexanediol, and the L-type Ca(+2) channel agonist, Bay K8644, induced Zn(+2) uptake. These data were consistent with competition for a common transport mechanism on the brush border membrane, possibly a novel multimetal channel. Copyright 2001 Elsevier Science Inc.

PMID:
11182548
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center