Format

Send to

Choose Destination
See comment in PubMed Commons below
Chem Biol. 2001 Jan;8(1):81-95.

Profiling the specific reactivity of the proteome with non-directed activity-based probes.

Author information

1
The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA.

Abstract

BACKGROUND:

The field of proteomics aims to characterize dynamics in protein function on a global level. However, several classes of proteins, in particular low abundance proteins, remain difficult to characterize using standard proteomics technologies. Recently, chemical strategies have emerged that profile classes of proteins based on activity rather than quantity, thereby greatly facilitating the analysis of low abundance constituents of the proteome.

RESULTS:

In order to expand the classes of proteins susceptible to analysis by activity-based methods, we have synthesized a library of biotinylated sulfonate esters and applied its members to complex proteomes under conditions that distinguish patterns of specific protein reactivity. Individual sulfonates exhibited unique profiles of proteome reactivity that in extreme cases appeared nearly orthogonal to one another. A robustly labeled protein was identified as a class I aldehyde dehydrogenase and shown to be irreversibly inhibited by members of the sulfonate library.

CONCLUSIONS:

Through screening the proteome with a non-directed library of chemical probes, diverse patterns of protein reactivity were uncovered. These probes labeled protein targets based on properties other than abundance, circumventing one of the major challenges facing contemporary proteomics research. Considering further that the probes were found to inhibit a target enzyme's catalytic activity, the methods described herein should facilitate the identification of compounds possessing both selective proteome reactivities and novel bioactivities.

PMID:
11182321
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center