Send to

Choose Destination
J Am Acad Dermatol. 2001 Feb;44(2):207-18.

Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study.

Author information

Electro-Optical Sciences, Inc, Irvington, NY, USA.



Differentiation of melanoma from melanocytic nevi is difficult even for skin cancer specialists. This motivates interest in computer-assisted analysis of lesion images.


Our purpose was to offer fully automatic differentiation of melanoma from dysplastic and other melanocytic nevi through multispectral digital dermoscopy.


At 4 clinical centers, images were taken of pigmented lesions suspected of being melanoma before biopsy. Ten gray-level (MelaFind) images of each lesion were acquired, each in a different portion of the visible and near-infrared spectrum. The images of 63 melanomas (33 invasive, 30 in situ) and 183 melanocytic nevi (of which 111 were dysplastic) were processed automatically through a computer expert system to separate melanomas from nevi. The expert system used either a linear or a nonlinear classifier. The "gold standard" for training and testing these classifiers was concordant diagnosis by two dermatopathologists.


On resubstitution, 100% sensitivity was achieved at 85% specificity with a 13-parameter linear classifier and 100%/73% with a 12-parameter nonlinear classifier. Under leave-one-out cross-validation, the linear classifier gave 100%/84% (sensitivity/specificity), whereas the nonlinear classifier gave 95%/68%. Infrared image features were significant, as were features based on wavelet analysis.


Automatic differentiation of invasive and in situ melanomas from melanocytic nevi is feasible, through multispectral digital dermoscopy.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center