Format

Send to

Choose Destination
See comment in PubMed Commons below
J Am Acad Dermatol. 2001 Feb;44(2):207-18.

Automatic differentiation of melanoma from melanocytic nevi with multispectral digital dermoscopy: a feasibility study.

Author information

1
Electro-Optical Sciences, Inc, Irvington, NY, USA. elbaum@eo-sciences.com

Abstract

BACKGROUND:

Differentiation of melanoma from melanocytic nevi is difficult even for skin cancer specialists. This motivates interest in computer-assisted analysis of lesion images.

OBJECTIVE:

Our purpose was to offer fully automatic differentiation of melanoma from dysplastic and other melanocytic nevi through multispectral digital dermoscopy.

METHOD:

At 4 clinical centers, images were taken of pigmented lesions suspected of being melanoma before biopsy. Ten gray-level (MelaFind) images of each lesion were acquired, each in a different portion of the visible and near-infrared spectrum. The images of 63 melanomas (33 invasive, 30 in situ) and 183 melanocytic nevi (of which 111 were dysplastic) were processed automatically through a computer expert system to separate melanomas from nevi. The expert system used either a linear or a nonlinear classifier. The "gold standard" for training and testing these classifiers was concordant diagnosis by two dermatopathologists.

RESULTS:

On resubstitution, 100% sensitivity was achieved at 85% specificity with a 13-parameter linear classifier and 100%/73% with a 12-parameter nonlinear classifier. Under leave-one-out cross-validation, the linear classifier gave 100%/84% (sensitivity/specificity), whereas the nonlinear classifier gave 95%/68%. Infrared image features were significant, as were features based on wavelet analysis.

CONCLUSION:

Automatic differentiation of invasive and in situ melanomas from melanocytic nevi is feasible, through multispectral digital dermoscopy.

PMID:
11174377
DOI:
10.1067/mjd.2001.110395
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center