Send to

Choose Destination
See comment in PubMed Commons below
J Biochem. 2001 Feb;129(2):185-91.

SPT genes: key players in the regulation of transcription, chromatin structure and other cellular processes.

Author information

Frontier Collaborative Research Center, Tokyo Institute of Technology, Nagatsuta, Yokohama 226-8503, Japan.


Suppressor of Ty (SPT) genes were originally identified through a genetic screen for mutations in the yeast Saccharomyces cerevisiae that restore gene expression disrupted by the insertion of the transposon Ty. Classic members of the SPT gene family, SPT11, SPT12, and SPT15, encode for the histones H2A and H2B, and for TATA-binding protein (TBP), respectively. Over the past few years, molecular complexes and cellular functions in which other SPT gene products involve have been discovered through genetic and biochemical studies in yeast and several other organisms: Key regulators of transcription and chromatin structure, such as DSIF, SAGA, and FACT, all contain SPT gene products as essential subunits. In addition, accumulating evidence suggests that SPT gene products play more diverse roles, including roles in DNA replication, DNA recombination and developmental regulation. Here we review the current understanding of the functions and roles of the SPT genes, with special emphasis on the role of SPT5 in transcript elongation and in neuronal development in vertebrates.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center