Send to

Choose Destination
See comment in PubMed Commons below
Inorg Chem. 2001 Jan 15;40(2):329-37.

Syntheses and redox properties of bis(hydroxoruthenium) complexes with quinone and bipyridine ligands. Water-oxidation catalysis.

Author information

  • 1Institute for Molecular Science, Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan.


The novel bridging ligand 1,8-bis(2,2':6',2"-terpyridyl)anthracene (btpyan) is synthesized by three reactions from 1,8-diformylanthracene to connect two [Ru(L)(OH)]+ units (L = 3,6-di-tert-butyl-1,2-benzoquinone (3,6-tBu2qui) and 2,2'-bipyridine (bpy)). An addition of tBuOK (2.0 equiv) to a methanolic solution of [RuII2(OH)2(3,6-tBu2qui)2(btpyan)](SbF6)2 ([1](SbF6)2) results in the generation of [RuII2(O)2(3,6-tBu2sq)2(btpyan)]0 (3,6-tBu2sq = 3,6-di-tert-butyl-1,2-semiquinone) due to the reduction of quinone coupled with the dissociation of the hydroxo protons. The resultant complex [RuII2(O)2(3,6-tBu2sq)2(btpyan)]0 undergoes ligand-localized oxidation at E1/2 = +0.40 V (vs Ag/AgCl) to give [RuII2(O)2(3,6-tBu2qui)2(btpyan)]2+ in MeOH solution. Furthermore, metal-localized oxidation of [RuII2(O)2(3,6-tBu2qui)2(btpyan)]2+ at Ep = +1.2 V in CF3CH2OH/ether or water gives [RuIII2(O)2(3,6-tBu2qui)2(btpyan)]4+, which catalyzes water oxidation. Controlled-potential electrolysis of [1](SbF6)2 at +1.70 V in the presence of H2O in CF3CH2OH evolves dioxygen with a current efficiency of 91% (21 turnovers). The turnover number of O2 evolution increases to 33,500 when the electrolysis is conducted in water (pH 4.0) by using a [1](SbF6)2-modified ITO electrode. On the other hand, the analogous complex [RuII2(OH)2(bpy)2(btpyan)](SbF6)2 ([2](SbF6)2) shows neither dissociation of the hydroxo protons, even in the presence of a large excess of tBuOK, nor activity for the oxidation of H2O under similar conditions.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center