Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2001 Jan 30;40(4):994-1001.

Probing the relative timing of hydrogen abstraction steps in the flavocytochrome b2 reaction with primary and solvent deuterium isotope effects and mutant enzymes.

Author information

  • 1Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, USA.

Abstract

Flavocytochrome b(2) catalyzes the oxidation of lactate to pyruvate. Primary deuterium and solvent kinetic isotope effects have been used to determine the relative timing of cleavage of the lactate O-H and C-H bonds by the wild-type enzyme, a mutant protein lacking the heme domain, and the D282N enzyme. The (D)V(max) and (D)(V/K(lactate)) values are both 3.0 with the wild-type enzyme at pH 7.5 and 25 degrees C, increasing to about 3.6 with the flavin domain and increasing further to about 4.5 with the D282N enzyme. Under these conditions, the (D20)V(max) values are 1.38, 1.18, and 0.98 for the wild-type enzyme, the flavin domain, and the D282N enzyme, respectively; the (D20)(V/K(lactate)) values are 0.9, 0.44, and 1.0, respectively. The (D)k(red) value is 5.4 for the wild-type enzyme and 3.5 for the flavin domain, whereas the solvent isotope effect on this kinetic parameter is 1.0 for both enzymes. The V(max) values for the wild-type enzyme and the flavin domain are 32 and 15% limited by viscosity, respectively. In contrast, the V/K(lactate) value for the flavin domain increases about 2-fold at moderate concentrations of glycerol. The data are consistent with a minimal chemical mechanism in which the lactate hydroxyl proton is not in flight in the transition state for C-H bond cleavage and there is an internal equilibrium involving the lactate-bound enzyme prior to C-H bond cleavage which is sensitive to solution conditions. Removal of the hydroxyl proton may occur in this pre-equilibrium.

PMID:
11170421
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center