Send to

Choose Destination
See comment in PubMed Commons below
Proteins. 2001 Mar 1;42(4):471-80.

Analysis of sequence signature defining functional specificity and structural stability in helix-loop-helix proteins.

Author information

  • 1Structural Biology Unit, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.


Specific functional properties of many proteins directing developmental responses via transcriptional regulation are orchestrated by their characteristic helix-loop-helix (HLH) structural motif. The entire HLH motif in all these proteins assumes a common conformation irrespective of their individual biological effects. The motif controls the affinity of HLH proteins for homo- or heterodimerization, permitting mixing and matching of regulatory factors, and thereby expanding the functional repertoire. Systematic analysis of molecular contacts at the dimer interface using the models built for the functional dimers combined with the pattern of conserved/nonconserved residues within different categories of HLH proteins helped in understanding the differential role played by different residues at the dimer interface for expressing corresponding functions. The residues associated with the self and partner interactions were identified, and the signature residues contributing toward dimeric stability and functional specificity were defined. It is evident that most of the residues involved in self interactions are common among all the HLH proteins. However, while certain residues involved in partner interactions are common among all the HLH proteins, certain others are common within a category, and still others vary widely defining specificity signature at different levels.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center