Send to

Choose Destination
J Clin Periodontol. 2001 Feb;28(2):181-8.

Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative.

Author information

Department Research and Development, Biora AB, Malmö, Sweden.



Enamel extracellular matrix proteins in the form of the enamel matrix derivative EMDOGAIN (EMD) have been successfully employed to mimic natural cementogenesis to restore fully functional periodontal ligament, cementum and alveolar bone in patients with severe periodontitis. When applied to denuded root surfaces EMD forms a matrix that locally facilitates regenerative responses in the adjacent periodontal tissues. The cellular mechanism(s), e.g. autocrine growth factors, extracellular matrix synthesis and cell growth, underlying PDL regeneration with EMD is however poorly investigated.


Human periodontal ligament (PDL) cells were cultured on EMD and monitored for cellular attachment rate, proliferation, DNA replication and metabolism. Furthermore, intracellular cyclic-AMP levels and autocrine production of selected growth factors were monitored by immunological assays. Controls included PDL and epithelial cells in parallel cultures.


PDL cell attachment rate, growth and metabolism were all significantly increased when EMD was present in cultures. Also, cells exposed to EMD showed increased intracellular cAMP signalling and autocrine production of TGF-beta1, IL-6 and PDGF AB when compared to controls. Epithelial cells increased cAMP and PDGF AB secretion when EMD was present, but proliferation and growth were inhibited.


Cultured PDL cells exposed to EMD increase attachment rate, growth rate and metabolism, and subsequently release several growth factors into the medium. The cellular interaction with EMD generates an intracellular cAMP signal, after which cells secrete TGF-beta1, IL-6 and PDGF AB. Epithelial cell growth however, is inhibited by the same signal. This suggest that EMD favours mesenchymal cell growth over epithelium, and that autocrine growth factors released by PDL cells exposed to EMD contribute to periodontal healing and regeneration in a process mimicking natural root development.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center