Send to

Choose Destination
Eur J Neurosci. 2001 Jan;13(2):248-56.

Characterization of the metabotropic glutamate receptors mediating phospholipase C activation and calcium release in cerebellar granule cells: calcium-dependence of the phospholipase C response.

Author information

Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Catalonia, Spain.


In this study we have determined the metabotropic glutamate receptors (mGluRs) involved in the glutamate activation of phospholipase C (PLC) and Ca(2+) mobilization in cerebellar granule cells at 9 days in vitro; and studied the Ca(2+) modulation of the PLC response. Both PLC activation and Ca(2+) signalling were found to be mediated exclusively by the mGluR1 subtype, although both group I mGluRs, mGluR1 alpha and mGluR5, could be detected in cell extracts. Exposure of cells to medium devoid of Ca(2+) for various times before agonist stimulation reduced the PLC response, which was quickly recovered following the re-exposure of cells to Ca(2+)-containing medium. The extent of the glutamate response correlated well with changes in the cytosolic Ca(2+) concentration. On the other hand, loading of the intracellular Ca(2+) stores by a transient depolarization followed by washing in nondepolarizing buffer, allowed glutamate to release stored Ca(2+) in the majority of cells and enhanced glutamate activation of PLC. Under such conditions, the absence of extracellular Ca(2+) during stimulation and the chelation of cytosolic Ca(2+) with BAPTA/AM inhibited both glutamate-elicited Ca(2+) response and PLC activation. Overall, these results indicate that the mGluR-mediated activation of PLC depends on the presence of extracellular Ca(2+) and can be modulated by moderate changes of cytosolic Ca(2+). Furthermore, ryanodine reduced PLC stimulation by glutamate in predepolarized cells but not in control cells, suggesting that ryanodine receptors could play a role in the potentiation of the mGluR-mediated activation of PLC by Ca(2+) release in predepolarized cells.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center