Send to

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 2001 Feb;125(2):1074-85.

Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways.

Author information

Center for Insect Science and Department of Plant Sciences, University of Arizona, Tucson, Arizona 85721, USA.


Little is known about molecular responses in plants to phloem feeding by insects. The induction of genes associated with wound and pathogen response pathways was investigated following green peach aphid (Myzus persicae) feeding on Arabidopsis. Aphid feeding on rosette leaves induced transcription of two genes associated with salicylic acid (SA)-dependent responses to pathogens (PR-1 and BGL2) 10- and 23-fold, respectively. Induction of PR-1 and BGL2 mRNA was reduced in npr1 mutant plants, which are deficient in SA signaling. Application of the SA analog benzothiadiazole led to decreases in aphid reproduction on leaves of both wild-type plants and mutant plants deficient in responsiveness to SA, suggesting that wild-type SA-dependent responses do not influence resistance to aphids. Two-fold increases occurred in mRNA levels of PDF1.2, which encodes defensin, a peptide involved in the jasmonate (JA)-/ethylene-dependent response pathway. Transcripts encoding JA-inducible lipoxygenase (LOX2) and SA/JA-inducible Phe-ammonia lyase increased 1.5- to 2-fold. PDF1.2 and LOX2 induction by aphids did not occur in infested leaves of the JA-resistant coi1-1 mutant. Aphid feeding induced 10-fold increases in mRNA levels of a stress-related monosaccharide symporter gene, STP4. Phloem feeding on Arabidopsis leads to stimulation of response pathways associated with both pathogen infection and wounding.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center