Send to

Choose Destination
See comment in PubMed Commons below
J Virol. 2001 Mar;75(5):2435-43.

Kaposi's sarcoma-associated herpesvirus can productively infect primary human keratinocytes and alter their growth properties.

Author information

Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA.


Previous studies have shown the presence of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) DNA in endothelial cells, in keratinocytes in the basal layer of the epidermis overlying plaque-stage nodular lesions of cutaneous Kaposi's sarcoma (KS), and in the epithelial cells of eccrine glands within KS lesions. We infected primary cell cultures of human keratinocytes with KSHV/HHV8. At 6 days post infection, transcription of viral genes was detected by reverse transcriptase PCR (RT-PCR), and protein expression was documented by an immunofluorescence assay with an anti-LANA monoclonal antibody. To determine whether the viral lytic cycle was inducible by chemical treatment, KSHV/HHV8-infected keratinocytes were treated with 12-O-tetradecanoylphorbol-13-acetate (TPA) and RT-PCR was performed to confirm the transcription of lytic genes such as open reading frame 26, (which encodes a capsid protein). Finally, to assess infectious viral production, other primary human cells (human umbilical vein endothelial cells), were infected with concentrated supernatant of KSHV-infected, TPA-induced keratinocytes and the presence of viral transcripts was confirmed by RT-PCR. The uninfected keratinocytes senesced 3 to 5 weeks after mock infection, while the KSHV/HHV8-infected keratinocytes continued to proliferate and to date are still in culture. However, 8 weeks after infection, viral genomes were no longer detectable by nested PCR. Although the previously KSHV/HHV8-infected keratinocytes still expressed epithelial markers, they acquired new characteristics such as contact inhibition loss, telomerase activity, anchorage-independent growth, and changes in cytokine production. These results show that KSHV/HHV8, like other herpesviruses, can infect and replicate in epithelial cells in vitro and suggest that in vivo these cells may play a significant role in the establishment of KSHV/HHV8 infection and viral transmission.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center