Send to

Choose Destination
J Neurophysiol. 2001 Feb;85(2):900-11.

Axonal L-type Ca2+ channels and anoxic injury in rat CNS white matter.

Author information

Department of Neurology, University of Washington School of Medicine, Seattle, Washington 98195, USA.


We studied the magnitude and route(s) of Ca2+ flux from extra- to intracellular compartments during anoxia in adult rat optic nerve (RON), a central white matter tract, using Ca2+ sensitive microelectrodes to monitor extracellular [Ca2+] ([Ca2+]o). One hour of anoxia caused a rapid loss of the stimulus-evoked compound action potential (CAP), which partially recovered following re-oxygenation, indicating that irreversible injury had occurred. After an initial increase caused by extracellular space shrinkage, anoxia produced a sustained decrease of 0.42 mM (29%) in [Ca2+]o. We quantified the [Ca2+]o decrease as the area below baseline [Ca2+]o during anoxia and used this as a qualitative index of suspected Ca2+ influx. The degree of RON injury was predicted by the amount of Ca2+ leaving the extracellular space. Bepridil, 0 Na+ artificial cerebrospinal fluid or tetrodotoxin reduced suspected Ca2+ influx during anoxia implicating reversal of the Na+/Ca2+ exchanger as a route of Ca2+ influx. Diltiazem reduced suspected Ca2+ influx during anoxia, suggesting that Ca2+ influx via L-type Ca2+ channels is a route of toxic Ca2+ influx into axons during anoxia. Immunocytochemical staining was used to demonstrate and localize high-threshold Ca2+ channels. Only alpha1(C) and alpha1(D) subunits were detected, indicating that only L-type Ca2+ channels were present. Double labeling with anti-neurofilament antibodies or anti-glial fibrillary acidic protein antibodies localized L-type Ca2+ channels to axons and astrocytes.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center