Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2001 Feb 15;21(4):1247-56.

Ca2+-independent protein kinase C Apl II mediates the serotonin-induced facilitation at depressed aplysia sensorimotor synapses.

Author information

1
Laboratoire de Neurobiologie et Comportement, Centre de Recherche en Sciences Neurologiques, Département de Physiologie, Université de Montréal, Montréal, Canada H3C 3J7.

Abstract

At nondepressed Aplysia sensory to motor synapses, serotonin (5-HT) facilitates transmitter release primarily through a protein kinase A pathway. In contrast, at depressed Aplysia sensory to motor synapses, 5-HT facilitates transmitter release primarily through a protein kinase C (PKC)-dependent pathway. It is known that only two phorbol ester-activated PKC isoforms, the Ca(2+)-dependent PKC Apl I and the Ca(2+)-independent PKC Apl II, exist in the Aplysia nervous system. For the first time, we have now been able to functionally determine which isoform of PKC is involved in a particular form of plasticity. We microinjected cultured sensorimotor pairs of neurons with various PKC constructs tagged with the enhanced green fluorescent protein as a reporter for successful plasmid expression. Our results demonstrate that short-term facilitation of depressed synapses is mediated by PKC Apl II. Dominant-negative PKC Apl II, but not dominant-negative PKC Apl I, disrupted the normal kinetics of 5-HT-induced facilitation by completely blocking its rapid onset. This effect was specific to depressed synapses, because dominant-negative PKC Apl II did not inhibit 5-HT-mediated facilitation of nondepressed synapses. Our results suggest that not only different signal transduction pathways but also different isoforms of a specific cascade may mediate physiological responses according to the state of a synapse.

PMID:
11160395
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center